
www.manaraa.com

Cooperating Transactions in the EPOS
Software Engineering Database

Jens-Otto Larsen

Div. of Computer Systems and Telematics (IDT),

Norwegian Institute of Technology (NTH), N-7034 Trondheim, Norway.

Phone: +47 7 594485, Fax: +47 7 594466, Email: jensotto@idt.unit.no.

Abstract

This paper presents the EPOS software engineering database and its models and

mechanisms to support cooperative work in a software engineering environment.

1 Introduction

One requirements for database support posed by advanced applications, like

CAD, CIM and Software engineering (SE), is support for cooperation between

ongoing activities.

Object-oriented database management systems o�er a framework for mod-

eling complex objects. Due to the duration and interdependence of development

activities in these environments, mechanisms for communication, cooperation and

synchronization are needed.

EPOS is a kernel software engineering environment covering both con�g-

uration management and software process management. The EPOS database,

EPOSDB, has been developed to provide persistent storage of software products

and processes. The EPOSDB is used by the EPOS applications, including a

software process management framework, and therefore provides a framework for

both data integration (through the data model) and inter-application communi-

cation.

First, we give a motivation for cooperation mechanisms from a software

engineering view. We then briey present the EPOSDB; the data model and

transaction model. We then present the mechanisms that have been designed,

and partially implemented, to support cooperative work.

2 Cooperation

We can identify some problems about the traditional model of serializable trans-

actions, which we will attempt to solve:

� The serializability criterion cannot be used, as our transaction may be in-

terdependent (as will be explained below), and because they last over a

long time period. Serializability would mean that it should at least \look

like" these were performed in some order, but this is not a god picture of



www.manaraa.com

the real world. We will have to allow conicts to happen, without aborting

or blocking transactions.

� We do not always want to have to wait for a long lasting activity to �nish,

before using any of the data produced by that activity. There is a need for

some facility to communicate parts of your work for others to see, before

you commit all your changes.

� A variant of the above arises when a user has started doing some modi�ca-

tions, and then want to \pass it on" to somebody else to do the �nishing,

while you continue with other work.

To solve these problems, we need some form of cooperation between ongoing

transactions, so we can perform parallel work on the same object or represent

dependencies between objects. The mechanisms should be exible, so that one

can choose the level of coupling (strong, loose) that is needed in each case.

We can support this by having these low level facilities available:

� Inter-transaction communication: A system for exchanging information (ob-

jects) between the clients of di�erent transactions. This can provide strong

coupling between the transactions.

� Noti�cation: A system for asynchronous noti�cation of clients about events

in the database (message reception, check-in by other transactions). This

provides loose coupling between the transactions.

3 The EPOS Database

The EPOSDB has been designed to support a software engineering environment

and it o�ers a structurally object-oriented data model, versioning and a long

transaction model. The database is realized in a client-server architecture.

In the following, we will give a brief presentation of the data and transaction

models. The versioning will not be discussed here.

3.1 Data Model

The data model of the EPOS database, EPOS-OOER is based on the Object-

Relation model, [6]. We will only give an overview of the most relevant charac-

teristics of the data model.

� Objects have unique identities and are created as instances of object types.

Objects must be related through external relations.

� Both object and relation types can be subtyped. Relation subtypes may

restrict the types of the participating object types, which are inherited from

the supertype.



www.manaraa.com

� Objects are created as instances of a speci�c object type, but they may be

dynamically converted to other super- or subtypes of the original type.

� The data model o�ers a standard set of value domains and a long-�eld

domain for storing text �les.

� The EPOSDB allows dynamic extensions of the type system, i.e. new sub-

types of the existing type hierarchy can be added to the database at any

time.

3.2 Transaction Model

EPOSDB o�ers a nested transaction model with long, non-serializable transac-

tions. Transactions may survive several application sessions and they are repre-

sented in the database by special transaction objects. Transactions are started

as sub-transactions of exiting ones and a \perpetual" root transaction forms the

base of the transaction hierarchy.

The transactions are user-controlled { they may be started and terminated

interactively. All database operations must be performed within the context of a

long transaction and only one user can be working within one transaction.

Objects are checked out from and back into the parent transaction. If

the requested objects are not present in the parent transaction, the request is

passed up the transaction hierarchy. The EPOSDB provides a exible locking

scheme, including non-restrictive read and write locks, similar to the lock types

in ObServer [2].

In addition to the functionality described above, transactions provide a

framework for versioning1. All changes made within a transaction are uniformly

versioned, implying that a transaction represents a consistent set of changes to

the database. A transaction represents a physical change to the database. When

the transaction is started, the range of the changes must be speci�ed, i.e. the

set of logical changes that are a�ected by the transaction. When later version

selections are made, the changes made by a transaction are included if the version

selection is within the range of the transaction.

1See e.g. [5] for more about our versioning.



www.manaraa.com

4 Cooperation Mechanisms

In this section we present the cooperation mechanisms designed for the EPOSDB.

Communication between database applications is important for coopera-

tion. The information which is communicated is related to the database con-

tents, both high-level information interpreted by humans, formatted information

interpreted by applications and direct relations to objects in the database. Since

the database is common to the applications, it is the natural environment for a

communication system.

In the EPOSDB, a long transaction is the fundamental work environment

and its life-timemay span several application sessions. Since long transactions ex-

ist without connected clients, they can be viewed as persistent database processes

and they form a natural base for de�ning the communication system between the

database users.

The cooperation model in the EPOSDB de�nes a set of mechanisms to

enable:

� Message Sending

This is a system for asynchronous communication between transactions of-

fering the ability to send simple, typed messages to other transactions,

possibly at di�erent sites.

� Noti�cations

Asynchronous noti�cations about events in the database. An example usage

is to get noti�cations about checked-out objects which have been modi�ed

by others.

� Object Propagation

A framework for propagating changed and new objects to designated ongo-

ing transactions, without making these object publicly available.

4.1 Message Sending

A central point is the information carried by a message. There is a wide variety

of possibilities, and we have settled for an extensible solution. We have base the

design on a general type Message, which can be subtyped on demand (adding

attributes carrying information).

The functionality of the interface operations is:

� Sending messages: This operation will send a message of the speci�ed type

(or an existing message object) to a speci�ed transaction. Relationships to

other objects will also be included, but not the objects referenced by the

relationships.

� Test for incoming messages: Checks if there are any messages waiting, but

not received. Succeeds if there are any messages in the mailbox.



www.manaraa.com

� Receive message: The �rst message is read from the mailbox and a new

message object is created in the transaction. This object will have an

identity distinct from objects in the sending transaction. If the type of the

message object is not de�ned in the schema of the receiving transaction,

the message object will will be converted.

A transaction can allow or deny sub-transactions access to received mes-

sages. A transaction can also forward messages to speci�ed sub-transactions.

4.2 Noti�cations

Objects can be checked out and locked with noti�cation locks attached to them.

When other applications try to access these objects, messages will be sent to the

transaction that owns the lock. The noti�cation locks resemble the communica-

tion modes de�ned in ObServer [2].

A set of basic message types for noti�cation messages is provided: Update-Ntf,

Read-Ntf, Write-Ntf and Read-Write-Ntf, describing respectively an update of

an object, or requests for reading, writing, or reading or writing. The messages

will be related to the object for which the noti�cation was sent and to the trans-

action that caused the noti�cation.

4.3 Object propagation

The object propagation mechanism is used when an application wants to prop-

agate changed objects or new objects to designated other transactions without

checking them into the parent transaction.

We distinguish two forms of object propagation: In the �rst case, the send-

ing transaction keeps the locks and access rights and the receiving transaction

gets a copy of the object without any locks. In the second case, the receiving

transaction also gets the \ownership" of the object, i.e. locks and access rights.

With this mechanism, check in and check out can be viewed as object prop-

agation between a transaction and its parent transaction. Only newly created

objects and objects which are checked out for writing can be propagated to other

transactions.

When the object propagation operation is performed, a \virtual" sub-transaction

of the receiving transaction will be created and the object to be propagated is

inserted into this sub-transaction. The receiving transaction will get a propaga-

tion message and can select when the object is received, i.e. checked in from the

sub-transaction.



www.manaraa.com

5 Implementation Status and Further Work

The EPOSDB as de�ned in section 3 has been implemented on top of the C-

ISAM package [4]. Database clients sends requests through an RPC protocol to a

central database server. The EPOSDB o�ers programmatic interfaces in C, C++

and Prolog.

The message sending mechanism has been implemented and the noti�cation

mechanism is under implementation. The system for object propagation is not

completed: it needs to handle the cases when two transactions have di�erent

schemas. We will design a model in which both object conversion and automatic

schema propagation is supported.

Due to the client-server architecture of the EPOSDB, we have not designed

an interactive noti�cation mechanism, i.e. asynchronous communication from the

database server to clients. The current approach results in applications polling

the database for incoming messages, but in some cases an immediate transfer and

processing of messages in connected applications is desired. Work in this area will

be necessary.

The nested transaction model lends itself to distribution with several database

servers, each hosting a number of long transactions. We foresee a system with a

central name service and server-server communication.

References

[1] Stuart I. Feldman, editor. Proceedings of the Fourth International Workshop on

Software Con�guration Management (SCM-4), Baltimore, Maryland, May 21{22,

1993.

[2] M. F. Hornick and S. B. Zdonik. A Shared Segmented Memory System for an

Object-Oriented Database. ACM Transactions on O�ce Information Systems, 5(1),

January 1987.

[3] Jens-Otto Larsen, Bj�rn P. Munch, and Reidar Conradi. Cooperating Transac-

tions in the EPOS Software Engineering Database. In Proc. 3rd ERCIM Database

Research Group Workshop on Updates and Constraints Handling in Advanced

Database Systems, Pisa, Italy, pages 61{67, September 1992. Also EPOS TR 157,

NTH, 31 March 1992, 6 p.

[4] Bj�rn P. Munch. Versioning in a Software Engineering Database | the Change

Oriented Way. PhD thesis, DCST, NTH, Trondheim, Norway, August 1993. 265

p. (PhD thesis NTH 1993:78).

[5] Bj�rn P. Munch, Jens-Otto Larsen, Bj�rn Gulla, Reidar Conradi, and Even-Andr�e

Karlsson. Uniform Versioning: The Change-Oriented Model. In [1], pages 188{196,

1993.

[6] James Rumbaugh. Relations as semantics constructs in an object-oriented language.

In Proc. ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages and Applications (OOPSLA'87), pages 466{481, Kissimmee, Florida,

October 1987. In ACM SIGPLAN Notices 22(12), Dec. 1987.


